
 1

Precise and Scalable Static Program Analysis of NASA
Flight Software

G. Brat and A. Venet
Kestrel Technology

NASA Ames Research Center, MS 269/2
Moffett Field, CA 94035-1000
650-604-1105 650-604-0775

brat@email.arc.nasa.gov arnaud@email.arc.nasa.gov

Abstract—Recent1,2 NASA mission failures (e.g., Mars
Polar Lander and Mars Orbiter) illustrate the importance of
having an efficient verification and validation process for
such systems. One software error, as simple as it may be,
can cause the loss of an expensive mission, or lead to budget
overruns and crunched schedules. Unfortunately, traditional
verification methods cannot guarantee the absence of errors
in software systems. Therefore, we have developed the CGS
static program analysis tool, which can exhaustively analyze
large C programs. CGS analyzes the source code and
identifies statements in which arrays are accessed out of
bounds, or, pointers are used outside the memory region
they should address. This paper gives a high-level
description of CGS and its theoretical foundations. It also
reports on the use of CGS on real NASA software systems
used in Mars missions (from Mars PathFinder to Mars
Exploration Rover) and on the International Space Station.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. STATIC ANALYSIS FOR V&V................................2
3. C GLOBAL SURVEYOR ..3
4. APPLICATIONS OF CGS ..5
5. LESSONS LEARNED ...8
6. CONCLUSION ..8
REFERENCES ...9
BIOGRAPHY...9

1. INTRODUCTION

Recent NASA mission failures (e.g., Mars Polar Lander and
Mars Orbiter) illustrate the difficulty of building embedded
software systems for space exploration and the importance
of having an efficient verification and validation (V&V)
process for such systems. One software error, as simple as it
may be, can cause the loss of an expensive mission ($250
millions at least for a mission to Mars), or lead to budget
overruns and crunched schedules. For example, the loss of
both spacecrafts in the Mars Surveyor 98 (the lander and the

1 0-7803-8870-4/05/$20.00© 2005 IEEE
2 IEEEAC paper #1213, Version 2, Updated December 7, 2004

orbiter) mission cost $328 millions to NASA; valuable
scientific data could not be obtained either.

Unfortunately, traditional verification methods (such as
testing) cannot guarantee the absence of errors in software
systems. Therefore, it is important to build verification tools
that exhaustively check for as many classes of errors as
possible. Static program analysis is a verification technique
that identifies faults, or certifies the absence of faults, in
software without having to execute the program. Using the
formal semantic of the programming language (C in our
case), this technique analyses the source code of a program
looking for faults of a certain type. We have developed a
static program analysis tool, called C Global Surveyor
(CGS), which can analyze large C programs for embedded
software systems. CGS analyzes the source code of C
programs and identifies statements in which arrays are
accessed out of bounds, or, pointers are used outside the
memory region they should address. CGS does its
verification using static analysis techniques based on the
theory of Abstract Interpretation. Even though the analysis
predicts what will happen at runtime, it is performed at
compile time. Therefore, it does not require executing the
program and providing input test data. Moreover, CGS
analysis is conservative in the sense that it performs all
checks necessary to find all errors of the same type (in our
case, all out-of-bound array accesses).

This paper gives a high-level description of the architecture
of CGS and the theoretical foundations (Abstract
Interpretation) supporting the correctness of the analysis.
More importantly, we report on the use of CGS on real
NASA software systems. We have analyzed flight software
used in Mars missions (from Mars PathFinder to Mars
Exploration Rover) as well as software used to control
experiments on the International Space Station. The sizes of
the software systems analyzed range from 40 to 600 KLOCs.
The analysis times range from 5 minutes to 24 hours on PC
platforms running Linux. The analyses did not require any
modifications of the original source code.

 2

2. STATIC ANALYSIS FOR V&V

The goal of static program analysis is to assess properties of
a program without executing the program. Static analysis has
its roots in compiler optimization. Most compilers do not
perform verification beyond type checking and superficial
syntactic checks because they focus on getting quick
feedback to the code developer. However, they can rely on
fairly sophisticated analyses for code optimization because
the user is willing to pay a penalty (in terms of compilation
time) and obtain optimized code. In other words, it is fine to
spend a little more time optimizing the code (which is done
once) if it makes the numerous executions run faster. Static
program analysis pushes the idea further by using even more
sophisticated analyses to find, at compile-time, bugs that can
happen at run-time. The rationale is that it is worth spending
time analyzing the software if it cuts down on manual
testing. This is what makes static analysis attractive to the
verification community.

Several techniques can be used to perform static analysis.
Theorem proving, data flow analysis [12], constraint solving
[1], and abstract interpretation [4,5] are among the most
popular. We could devote an entire article, if not several, to
the comparison of these techniques. However, in this paper,
we only focus on one technique, abstract interpretation, and
show its applicability to real embedded software.

The theory of Abstract Interpretation pioneered by Patrick
and Radhia Cousot in the mid 70's provides algorithms for
building program analyzers which can detect all runtime
errors by exploring the text of the program [4,5]. The
program is not executed and no test case is needed. A
program analyzer based on Abstract Interpretation is a kind
of theorem prover that infers properties about the execution
of the program from its text (the source code) and a formal
specification of the semantics of the language (which is built
in the analyzer). The fundamental result of Abstract
Interpretation is that program analyzers obtained by
following the formal framework defined by Patrick and
Radhia Cousot are guaranteed to cover all possible
execution paths.

Runtime errors are errors that cause exceptions at runtime.
Typically, in C, either they result in creating a core dump or
they cause data corruption that may cause crashes. In this
study we mostly looked for the following runtime errors:

(1) Access to un-initialized variables, i.e., variables that
are used even though they have not yet been assigned a
value.

(2) Access to un-initialized pointers, i.e., pointers that are
de-referenced (i.e., attempt to read from or write to the
memory region pointed by the pointer) without having
been assigned to a memory region.

(3) Out-of-bound array access, e.g., a[10] where a is an
array of size less or equal to 10 (assuming that
indexing starts at 0).

(4) Arithmetic underflow/overflow, e.g., the program does
not take into account that the storage of a computed
value might take more bits than is allocated for the
variable holding the value.

(5) Invalid arithmetic operations, e.g., taking the square
root of a negative number.

(6) Non-terminating loops, e.g., the exit condition of a
loop can never be evaluated to false (Note that most
embedded programs contain non-terminating loops,
such as ‘while true do …;’ by design).

(7) Non-terminating calls, i.e., the control flow of a
program never returns from the call to a function
(because this function has a non-terminating loop for
example).

The price to pay for exhaustive coverage is incompleteness
(i.e., impossibility of determining the safety of all operations
with exact precision). In other words, the analyzer can raise
false alarms on some operations that are actually safe.
However, if the analyzer deems an operation safe, then
errors cannot occur on any execution path. The program
analyzer can also detect certain runtime errors which occur
every time the execution reaches some point in the program.

Traditionally, there are two complementary uses of a
program analyzer:

(1) as a debugger that detects runtime errors statically
without executing the program, and

(2) as a preprocessor that reduces the number of
potentially dangerous operations that have to be
checked by a traditional validation process (code
reviewing, test writing, and so on).

The first use is akin to traditional debugging; the developer
tries to flush as many as bugs as he can from the code before
it gets to verification. The second use is called certification;
the goal is to prove the absence of errors of a certain class,
thus, alleviating the need for testing for this class of errors.
This requires that the static analyzer achieves a good
selectivity - the percentage of operations which are proven
to be safe by the program analyzer. Indeed, if 50% of all
operations in the program are marked as potentially
dangerous by the analyzer, there are no benefits to using
such techniques. In the rest of the paper, we refer to these
two different types of static analysis as certification and
debugging.

The question is: when should one use debugging or
certification? On one hand, debugging is usually faster, but

 3

incomplete (since it does not find all the bugs). On the other
hand, certification is complete, but it takes quite a long time.
So, which one should one use? The answer is both, but not
at the same stage of the software development process. Let
us put it in terms of the V diagram shown in Figure 1. Black
dash arrows indicate the flow of verification while blue
(alternating dots and dashes) arrows indicate what
development phase is validated by what validation phase. In
general, static analysis applies to the phases in the yellow
(shaded) zone.

Let us ignore the software detailed design phase (because it
requires a special type of static analysis). Debugging is the
most useful in the software coding phase. The developer can
quickly find a range of bugs and gain some confidence that
the software might not crash at run-time. Debugging could
also be applied in the unit verification and software
integration phase. However, debugging does not give you
any coverage information (as opposed to sophisticated
testing techniques). Therefore, it cannot measure how well
you have tested the units or the system. Now, certification
gives you that coverage (actually, it guarantees 100%
coverage of all the control and data paths). In general, its
application for unit testing requires writing (or generating)
drivers for each of the units. This pre-required step might
take some time, but the analyses should be fairly fast and
precise, especially if the size of each unit is kept to a few

thousands of lines of code. Certification can be very useful
in the phase of system integration. Since the whole system is
put together, the analysis only considers a coherent set of
inputs to each function and module. This can potentially
yield good precision. The goal of our work is to evaluate
whether this can really be done for realistic software
systems, especially those used in aerospace.

3. C GLOBAL SURVEYOR

C Global Surveyor (CGS) is a scalable, precise static
analyzer that detects memory errors in C programs. Simply
stated, CGS takes the source code of a software system
written in C, builds an abstract model of it, and analyzes it to
detect errors such as out-of-bound array accesses and de-
referencing of null pointers. CGS analysis is exhaustive (all
possible execution paths are explored), conservative (all
errors, including potential ones, are flagged), and does not
require test cases or even executing the program. What
differentiates CGS from other static analyzers is its ability to
scale to large systems (more than 250 KLOC) and its
precision (less than 15% false positives) [3]. Scalability is a
minimal requirement to be useful to any NASA mission.
Precision is critical to user acceptance, since engineers tend
to get discouraged by the high number of warnings produced
by static analyzers.

Abstract interpretation

Abstract Interpretation [5,8,9] is a theoretical framework
developed by Patrick and Radhia Cousot that gives a
methodology for constructing static analyses. The major
feature of a static analyzer based on Abstract Interpretation
consists of the mathematical guarantee that all properties
hereby computed hold for all possible execution paths of the
program. The core idea behind this theory is the careful use
of the notion of approximation: all possible values a
variable can take at a certain program point are
approximated by a set that can be compactly represented as
an interval in the case of scalar variables for example. All
possible values of the variable are guaranteed to lie within
this set, thus ensuring the soundness of the analysis.
However, infeasible value assignments of the variable can
be introduced because of the approximation process. This
results into a number of false alarms, where the analyzer
detects a potential problem at some program statement
because of approximations in the assessment of some
variable ranges whereas the program is safe in reality. The
main point though is that a statement deemed as safe can
never cause an error. This is the backbone of abstract-
interpretation-based program certification.

Intuitively, the process of abstract interpretation is very
similar to that of designing a system in control theory: a
physical system is first modeled using a system of partial
differential equations which is not directly solvable in

S/W Detailed
Design

 S/W Qualif.
 Testing

 S/W Unit
Testing

 S/WArch.
Design

S/W Coding

System
Integration

System
Qualif. Testing

Syst. Arch.
Design

S/W Req.
Analysis

Syst. Reqs.

KEY

Phase

Product

Verify

Validate

Software
Integration

Figure 1. Place of Static Analysis in S/W Lifecycle.

Static Analysis

 4

general and for which approximate numerical resolution
schemes are employed. The choice of the approximation
guides the construction of the static analyzer. Once an
approximation scheme has been designed for all objects
manipulated by the family of programs considered, we
construct a translator from the program source into a system
of semantic equations. These equations model the flow of
information between the statements of the program. It is
similar in its structure to the code generation phase of a
compiler, where semantic equations are produced instead of
assembly code. This phase is called the build in CGS. Any
solution of the semantic equations is a sound approximation
of all possible values of the program variables. Since we
want to limit the number of false alarms caused by the
approximation we are interested in the smallest solution of
these equations which is guaranteed to exist (see [5,7] for
more details). Unfortunately this smallest solution is not
always computable or can take too much time to compute.
Therefore we have to use heuristics that can lead us to a
solution that is “as good as possible” (by using widening and
narrowing operators [5,6,13]) with reasonable execution
times. This phase is called the solve in CGS. Because of the
sub-optimality of the solution computed during this phase,
CGS allows the user to iterate the solve in a feedback loop,
thus enabling a stepwise refinement of the results.

Architecture

Large programs as those developed for the Mars Exploration
Program pose a number of challenges in designing an
efficient static analyzer. Determining how objects and
variables may be connected in memory via pointers is a
problem known as pointer analysis. This is a very active
research area which has produced over the years several
good algorithms [10,11,14,18] that are able to scale to a
million lines of code. However these algorithms cannot be
directly applied in our case because they abstract away all
information about positions in arrays and objects. Therefore
their use would cause an unacceptable level of false alarms.
CGS computes numerical relationships between the scalar
program variables that are used for indexing arrays,
controlling loop iterations and performing pointer
arithmetic. These numerical relationships are hereafter used
to perform an array-sensitive pointer analysis. Improvements
on this analysis can be found in [15,16]. This is illustrated in
Figure 2 where all elements of the array S.f are memory
blocks of size 100 except the first one, thus causing a
memory error during the execution of the loop nest.

Classical abstract interpretation algorithms which can
discover numerical relationships between program variables
do not scale to the large programs we were considering. We
tackled the time complexity problem in two different
directions. First, we improved the scalability of existing
algorithms using adaptive variable clustering as described
below. Second, we designed a distributed architecture for
CGS that enables the distribution of the static analysis
algorithms over a cluster of machines.

Figure 2. Combining numerical invariants and pointer
analysis

The second major problem in the design of a scalable static
analyzer is the management of the memory. The number of
artifacts produced by a static analyzer is tremendous. For
example, the semantic equations of the smallest flight
software we have analyzed (140 KLOC) required more than
the 1GB memory available on our computers. This requires
a smart memory management in which we can dynamically
load and unload artifacts. We chose a database-centric
architecture in which a relational database plays the role of a
persistent network-transparent memory. This also makes the
implementation of distributed analysis algorithms simpler
since there is no stream of data between two processes on
two different hosts, everything being centralized within the
database. Moreover we do not have to handle mutual
exclusion since this is already part of the database
management system.

Innovations

To achieve the main goals of CGS, i.e., be scalable and very
precise, we had to go beyond the state-of-the-art in research
in static analysis. We now describe the six research
innovations that had to take place to achieve our goals. The
first two innovations work towards improving scalability
while the last two target precision. The other two contribute
to both scalability and precision.

CGS relies on scalable abstract numerical domains,
switching from one to the other in an adaptive manner. We
rely on two main abstract domains. First, numerical intervals
allow us to track information about integer variables.
Second, we can also express numerical constraints between
pairs of variables (e.g., x-y ≤ c) using the difference-bound
matrices domain. It allows for example to track constraints
between loop indices and variables appearing in the loop
body. Unfortunately, this domain does not scale, and
therefore, it applies only to small sets of variables. In [2],
these sets are computed syntactically. We use an adaptive
method to keep the size of those sets small. Future iterations
of CGS should include a generalization of this technique that
will allow us to apply even more powerful abstract domains
(e.g., polyhedra [6]) to even smaller sets of constraints.

Points-to graph

S f

20 100

0 1 9

Numerical invariants

0 <= i < 10
0 <= j < 100

for (i = 0; i < 10; i++)
 for (j = 0; j < 100; j++)
 S.f[i][j] = ...;

 5

CGS uses distributed algorithms. We are not aware of any
static analyzer that can distribute the analysis over several
processors; CGS can. This gives CGS a speed advantage
since PC machines now come with dual processors and it
also reduces our memory requirements (note that all
intermediary results are stored in a common database
residing on a disk), thus reducing the risk of time-consuming
swapping cycles. Whereas swapping does not distinguish
between data in memory, CGS organizes related data within
the same table in the database. This enables efficient access
to even very large tables through the database query engine.

CGS mixes flow sensitive and flow insensitive analyses. A
flow-sensitive analysis distinguishes between the values of a
variable at different program point [4,6] whereas a flow-
insensitive analysis gives a global approximation of all
possible values of a variable across the program [11,14].
Other static analyzers allow using one or the other. CGS
takes a different approach since it depends on the manners
variables are allocated. We observed that local variables
whose addresses are not taken (used for example to index
the elements of an array or traverse a memory block) carry
most of the information and must be represented precisely.
These variables are handled in a flow-sensitive manner
while heap allocated data (which are usually subject to
concurrent thread accesses) are treated in a flow-insensitive
manner.

CGS performs a mutual incremental refinement of the
points-to (which determines memory locations, or addresses)
and numerical information (which computes possible
offsets). Traditionally, the points-to analysis is done before
any analysis (especially before the numerical analysis). In
CGS, both analyses feed off each other in an iterative
process; each iteration performs an incremental refinement
on the precision of the analyses until a global fixed point is
reached.

CGS relies on a precise representation of pointer arithmetic
in complex data structures such as multi-dimensional arrays.
This allows us to compute precise offsets for array elements,
even in the case of multidimensional arrays [17].

CGS also performs a points-to analysis that is an extension
of Das’ algorithm [10]. Das noticed that being precise about
the first level (or depth) in graphs of pointers increases
drastically the precision of points-to analysis for most C
programs. It turns out that for software following the MPF
legacy we need to be precise to the second or third level. We
therefore implemented a multi-level flow points-to analysis
that generalizes Das’ idea.

Some of these innovations formed the basis for developing
CGS; others were the results of constantly testing our ideas,
and their implementation, with real NASA software systems
such as the MPF and DS1 flight software.

Results interpretation

By the end of the analysis CGS has assigned a set of
possible addresses together with an index range to each
memory access operation of the program. The array-bound
checking process simply scans these data and checks the
indices against the size of the objects being accessed. We
use a four-color code (green, orange, red, black) to present
the results to users. If the set of indices accessed during the
operation lies within the range of memory cells spanned by
the object being de-referenced, the operation is deemed safe
and colored in green. If the set of indices being accessed is
completely disjoint from the memory area covered by the
object, this is a definite memory violation that will occur
whenever the operation is performed. The operation is
flagged in red. If the set of indices being accessed is empty,
this simply means that no execution path ever leads to this
operation. In other words, this is dead code and we color it
in black. In all other cases we color the operation in orange.
An operation flagged in orange has two possible meanings:
it is either an intermittent error that occurs for certain paths
of execution but not for others, or it is a false alarm due to
spurious values for the index caused by the approximation
scheme. The tables stored in the database containing the
numerical relationships and the points-to information can
then be browsed during an interactive SQL session in order
to bring out the causes of a red or orange error. This turned
out to be quite useful in practice and this task could be easily
performed by newly trained users from Marshall Space
Center on software running on the International Space
Station.

4. APPLICATIONS OF CGS

The MPF software family

What we call the MPF software family consists of flight
software systems that were developed based on the flight
software system for the Mars PathFinder mission. The first
to “re-use” the MPF flight software was the Deep Space One
(DS1) mission. DS1 was not a Mars mission; it was a
technology demonstration mission. For example, DS1 flew
the Remote Agent experiment, which demonstrated the first
use of planning and scheduling technology to control a
spacecraft and the use of an ion drive in space. We analyzed
the conventional part of the flight software (i.e., the one
directly inherited from MPF). Since the goals of DS1 were
different from the goals of MPF, the flight software was
slightly different. For example, since DS1 did not land on
any planet, the Entry/Descent/Landing module was not used
in DS1. The second re-use of MPF was done for the Mars
Exploration Rover mission (MER). Actually, the core of the
development team for MER was the same as the
development team for MPF. So, in some sense, the heritage
from MPF was more direct than for DS1. However, the
flight software (more than) quadrupled because of increased
functionalities and changes in the overall design of the

 6

spacecraft. For example, while both the rover and the
spacecraft had their own software on MPF, MER went a
different route and had the rover controlled the whole
spacecraft, even during cruise and landing.

From a static analysis point of view, the three systems are
quite similar since they use the same (object-oriented even
though they were developed in C) software architecture as
well as some modules (such as the quaternion library). For
example, all systems are multi-threaded and they use the
threading package of VxWorks. Communication between
threads is done using message queues. Even though
messages are quite complex (e.g., they contain not only data
but also references to callback replies), they are serialized
into arrays of integers. Thus, in some cases, the analysis
loses information about for example the call flow, or the
sizes of matrices passed from one module to the next. This
was a major source of imprecision in our analyses. Another
important factor is the size of these applications. Overall, the
increased complexity of the missions was reflected in the
size of each application. As Table 1 shows, the size ranges
from 140 KLOCs to 540 KLOCs and the number of threads
increased from 23 to more than one hundred in MER.

Table 1. Software complexity for MPF family.

 MPF DS1 MER

Size (in KLOCs) 140 280 540

#threads 23 40 100+

The results for the MPF family were very good. This is not
surprising since we design CGS to work well for this family.
In fact, we used the MPF and DS1 software as testbeds
during the development of CGS. It made for uneasy
debugging since they are quite large software, but it gave us
a very realistic “tuning” base. Overall, we obtained about
85% precision (the percentage of checks that are classified
with certainty as correct, incorrect, or unreachable). The
average running times were about 1.5 hours for MPF and
about 3 hours for DS1. The analysis of MER took much
longer (about 24 hours). There are two major reasons for
that. First, the sheer size of MER (540 KLOCs) is a big
factor. This translated into storing tables (especially for alias
information) holding two or three millions artifacts in the
database. Loading and populating such big tables take a lot
of time. Moreover, their storage in memory (which is limited
to 1 GB per process on our machines) needs to be
optimized. Unfortunately, it is mostly done at the expense of
the analysis time. Overall, we were disappointed in the
performance of the database we used (PostgreSQL).
Manipulations of large tables were slow even with the use of

index structures. It seems that with MER we reached the
maximal workload the database can sustain, which makes
the analysis time become non-linear. We are currently
investigating ways to improve the database response time.
The second reason for the slow response times lies in the
imprecision of our alias analysis. As mentioned above,
callback replies are cast as integers when they are placed in
messages. This causes the analysis to lose track of them and
therefore to make some conservative approximations about
the binding of these replies. This resulted in creating big
strongly connected components (SCC) in the call graph (in
other words, recursive calls involving lots of functions). Our
first run of CGS on MER showed an SCC of more than
10000 functions (almost all the functions in MER since there
are about 11588 functions in our version of MER). By
making the analysis ignore some of the low level functions
we were able to cut this set to 1000 functions. This is still a
huge drain on the response time since the analysis needs to
perform a fix-point iteration over every SCC.

Obviously, more work is needed to refine the precision and
the response time as flight software systems are getting
larger and larger as well as more and more complex. For
example, the flight software system for MSL (the Mars
Science Laboratory mission) is expected to reach 1 MLOCs.
Yet, we are quite happy with the current results, especially
when we compare them with the results we obtain using a
commercial static analyzer as described in [3]. We can now
analyze the whole system without having to cut it in pieces.
Moreover, our processing time for the whole system (540
KLOC) is of the same order as the average processing time
of the commercial analyzer for a 40 KLOC-size slice.

Shuttle and Space Station Flight Software

The application of CGS to flight software for the shuttle and
the International Space Station (ISS) is part of a technology
infusion effort. Our goal is to teach NASA developers to use
CGS and adopt it for regular use on their projects. In this
particular case, three developers from the Marshall Flight
Space Center (MSFC) came to NASA Ames, got trained in
using CGS, and used CGS on flight software systems they
had developed at MSFC. Overall, we analyzed five modules.

(1) The Application Processor (AP) module is part of the
flight software for the Advanced Video Guidance
Sensor (AVGS), which flew as experiments on two
Space Shuttle missions and will be the primary sensor
for the close-proximity operation in the DART
mission. The DART mission seeks to advance the state
of the art in safe and reliable autonomous rendezvous
capabilities at NASA. The AP module represents about
12 KLOCs of C code.

(2) The IO Processor (IOP) module is also part of the
AVGS. It represents 7 KLOCs of C code.

 7

(3) The goal of the Materials Science Research Rack
(MSRR) aboard the ISS is to offer capabilities to
facilitate a wide range of materials science
investigations. For example, the facility will provide
the common subsystems and interfaces required for the
operation of experiment hardware, accommodate
telescience capabilities, and provide the capability for
simultaneous on-orbit processing. This application
consists of 55 KLOCs of C code.

(4) The Urine Processor Assembly (UPA) is part of the
life support in the ISS. The UPA controller consists of
47 KLOCs of C code.

(5) Finally, the last module is the boot loader
(BOOTLDR) for the shuttle engine controller. It consis
of 7 KLOC of C code. The MSFC development team is
also in the process of using static analyzers (including
CGS) to analyze the whole controller. However, we do
not have results for this experiment.

The results for these modules were neither good nor bad.
First, the response times of these analyses are very
satisfying. Each analysis was only a matter of minutes on
laptop (i.e., machines that are slower and have less memory
than the desktops we use for the analysis of the MPF
family). Second, the precision was quite good (around 85%),
but it revealed some flaws in CGS. For example, structures
with bit fields were not treated properly. Moreover, we had
problems with pointers to physical hardware devices. The
analysis cannot find any size information and it therefore
assumes that the size is zero. This deficiency points out the
need for user information. We are in the process of
implementing an interface that a user could use to give such
information. This experiment was also a good opportunity to
get feedback from CGS users who are not part of the
development team. It gave us some useful usability data. For
example, it is clear that CGS needs to provide type
information when the results are scanned by the tool user. It
was very cumbersome for users to track the type information
across code and header files. We are therefore implementing
a function that dumps type information in the database,
thereby making it directly available to a user.

Space Station Biological Experiment Software

This experiment was the opportunity for us to try CGS on a
different type of software. The Habitat Holding Rack (HHR)
software is not a flight software system in the sense that it is
not controlling a spacecraft or a rover; it controls biological
experiments done on the International Space Station. The
HHR is the central part of the biological and scientific
experiments to be conducted on-orbit and on the ground for
the UF-3 and future missions. The Biological Research
Project Rack Interface Controller (B-RIC) and Centrifuge
Rack Interface Controller (C-RIC) are the command and
control components of the HHR. The C-RIC being
unavailable at the time, CGS was applied only to the B-RIC.

The B-RIC formats telemetry data received from Payloads
for download to the ground, and creates HHR and Payload
Health and Status (H&S) data for transmission to the ISS.

The B-RIC software is about 50 KLOCs of C code. The
software is made of five modules (each running on a
different board within the Habitat Holding Rack) that were
analyzed separately:

(1) Video Digitalization Compression Card (VDCC). This
module implements the video controller for monitoring
the biological experiments. It is the most complex
module of the software. It contains 32 KLOCs.

(2) High Rate Link Card (HRLC). This module manages
the communications between the HHR and the ground
control on Earth. It contains 16 KLOCs.

(3) Serial Card 1553 (SC1553). This module manages the
communications between the HHR and the astronaut
laptops via the 1553 synchronous network of the ISS.
It contains 9 KLOCs.

(4) Serial Card (SERC). The SERC software module is
the serial communications link to the HHR. It contains
a bit less than 1 KLOCs.

(5) Main Controller Card (MCC). This software module is
the main controller for the HHR. It contains 19
KLOCs.

The results of the analyses are quite surprising for us and
show that we need to adapt CGS to this type of software. For
example, the precision is 30%, which is quite disappointing.
Moreover, about 35% of the checks classified as certain
errors are not errors. After further (manual) investigation,
we found that this is due to hardware pointers. The isolation
of the source code verification with CGS without
attachments to external devices and/or interfaces shows up
as repeated errors for all instances where there is no
connectivity. For example, in the SERC Module, the
Payload Manager Function queries the Payload Table.
Because that Function depends on an external link for
execution, the CGS Tool tagged all instances of calls as red
errors. Anyway, the analysis times are also quite
disappointing given the sizes of the modules being analyzed.
In general, the analyses took from 30 minutes to 2 hours,
except for the VDCC modules which took 14 hours. We are
still in the process of analyzing these modules to find out
what causes such long analysis times. Given that these
analyses were performed on a laptop with poor (memory and
processing speed) performances, our current guess is that
CGS spent most of its processing time doing garbage
collection. This assumption needs to be verified.

 8

5. LESSONS LEARNED

The first lesson is that scaling up to large programs requires
a fine-grained control of the dynamic allocation of data in
the analyzer. In our case, the use of a garbage collector frees
us from having to manage all de-allocations, but it forces us
to be smart in our use of memory allocation. Indeed, the
garbage collector used in CGS has a limit of 1 GB, which
cannot be changed. Therefore, we need to ensure that we are
not allocating more than 1 GB of memory, knowing that the
garbage collector might allocate larger chunk of memory
than is needed by the data we manipulate. Of course, the size
of the memory blocks allocated by the garbage collector can
be set to (almost) any arbitrary size. However, reducing the
size of the blocks also triggers more frequent calls to the
garbage collector, thus impacting the response time of the
analysis.

The second lesson concerns the use of a database to manage
permanent artifacts. In our original mindset, the SQL
database operations could be used to efficiently compute
functions on the artifacts (e.g., alias tables, call table, and so
on) in the database, rather than having to pull the data out of
the database, compute the function, and dump the results in
the database again. This turned out to be an unrealistic
expectation. Database operations are too slow for that. So,
the biggest gain in using a database is that it can
automatically handle distributed requests. Finally, it might
be possible to optimize the database accesses by organizing
large tables into hierarchies of small tables. However, this is
possible only if the keys used to access data in the tables are
consistent throughout the analysis.

The third lesson is that distributing the analysis does not
always pay off, unless you can run the analysis on a truly
parallel machine. Indeed, in many phases of the analysis the
network access times (for loading or storing analysis
artifacts or synchronizing with other processes) outweigh the
processing time required by the analysis. Therefore, unless
processes can communicate without going through a
network, the analysis might be slowed down. Typically, we
observed that the gains from distributing the analysis level
off when we use more than four processors (which
represents two machines since each of our machines have
dual processors). Finally, using PVM to distribute the
analysis really hampered the debugging of CGS. It was
quite hard to pinpoint crashes because most analysis
processes died without giving any information back to the
master process.

6. CONCLUSION

In this paper, we have given a short introduction to C Global
Surveyor (CGS), a static analyzer based on Abstract
Interpretation. CGS can find array-out-of-bound and null
pointer de-reference errors in embedded C programs. We

also have reported on the use of CGS on real NASA
software systems ranging from the flight control software for
three JPL missions (MPF, DS1, and MER) to software
controlling experiments on the International Space Station.
We observed that CGS scales without producing many false
positives to the large JPL applications (over 500 KLOCs).
We expected this result since we designed our analysis
algorithms to work well with the software following the
MPF family. Similarly, the low precision and response times
of CGS in the analysis of the Habitat Holding Rack software
are not surprising; we did not specialize CGS for this type of
software. Anyway, we conjecture that the slow response
times may be due to running the analysis on under-
performing hardware (laptop with low processing speed and
little memory capacity). However, as of now, we cannot yet
pinpoint what coding practices caused the precision
problems. Still we are confident that, after studying the
results closer we can tune CGS to work well for all these
applications, and therefore, be applicable to lots of NASA
missions.

 9

REFERENCES

[1] A. Aiken and M. Fähndrich, “Program Analysis using
Mixed Term and Set Constraints,” 4th International Static
Analysis Symposium Proceedings, 1997.

[2] B. Blanchet et al., “Design and implementation of a
special-purpose static program analyzer for safety-critical
real-time embedded software,” LNCS 2566, 85–108,
2003.

[3] G. Brat and R. Klemm, “Static Analysis of the Mars
Exploration Rover flight software,” 1st International Space
Mission Challenge for Information Technology
Proceedings, 321–326, 2003.

[4] P. Cousot and R. Cousot, “Static Determination of
Dynamic Properties of Programs,” 2nd International
Symposium on Programming Proceedings, 106–130,
1976.

[5] P. Cousot and R. Cousot, “Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints,” 4th
Symposium on Principles of Programming Languages
Proceedings, 238–353, 1977.

[6] P. Cousot and N. Halbwachs, “Automatic discovery of
linear restraints among variables of a program,” Fifth
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages Proceedings, 84—
97, 1978.

[7] P. Cousot and R. Cousot, “Constructive versions of
Tarski's fixed point theorems,” Pacific Journal of
athematics, Vol. 82, No. 1, 43—57, 1979.

 [8] P.Cousot, “Semantic foundations of program analysis,”
Program Flow Analysis: Theory and Applications, Ch. 10,
303—342, Prentice-Hall, 1981.

[9] P. Cousot and R. Cousot, “Abstract interpretation
frameworks,” Journal of Logic and Computation,
2(4):511—547, 1992.

[10] M. Das, “Unification-Based Pointer Analysis with
Directional Assignments,” ACM SIGPLAN Conference
on Programming Language Design and Implementation
Proceedings, 2000.

[11] N. Heintze and O. Tardieu, “Ultra-fast Aliasing
Analysis using CLA: A Million Lines of C Code in a
Second”, International Conference on Programming
Language Design and Implementation Proceedings, 254–
263, 2001.

[12] W. Landi, “Interprocedural Aliasing in the Presence of
Pointers,” Ph.D. thesis, Rutgers University, 1992.

 [13] A. Mine, “A New Numerical Abstract Domain Based on
Difference-Bound Matrices,” Programs As Data Objects
II, 155—172, LNCS 2053, Springer-Verlag, 2001.

 [14] B. Steensgaard, “Points-to Analysis by Type Inference
of Programs with Structures and Unions,” International
Conference on Compiler Construction Proceedings, 135–
150, LNCS 1060, Springer-Verlag, 1996.

[15] A. Venet, “Nonuniform Alias Analysis of Recursive
Data Structures and Arrays,” Internationa Static Analysis
Symposium Proceedings, 36–51, LNCS 2477, 2002.

[16] A. Venet, “A Scalable Nonuniform Pointer Analysis for
Embedded Programs,” International Static Analysis
Symposium Proceedings, 149–164, LNCS 3148, 2004.

[17] A. Venet and G. Brat, “Precise and Efficient Static Array
Bound Checking for Large Embedded C Programs,”
International Conference on Programming Language
Design and Implementation Proceedings, 231–242, 2004.

[18] A. Venet, “Automatic Analysis of Pointer Aliasing for
Untyped Programs,” Science of Computer Programming,
pages 223—248, volume 35(2), 1999.

BIOGRAPHY

Dr. Brat received his M.Sc. and Ph.D.
in Electrical & Computer Engineering in 1998 (The
University of Texas at Austin, USA). His thesis defined a
(max,+) algebra to model and evaluate non-stationary,
periodic timed discrete event systems. Since then, he has
specialized on the application of static analysis to software
verification. From 1997 to June 1999, he worked at MCC
where he led a project that developed static analysis tools
for software verification. In June 1999, he joined the
Automated Software Engineering group at the NASA Ames
Research Center and focused on the application of static
analysis to the verification of large software systems. For
example, he co-developed and applied static analysis tools
based on abstract interpretation to the verification of
software for the Mars PathFinder, Deep Space One, and
Mars Exploration Rover missions at JPL, various
International Space Station controllers at MSFC, and the

 10

International Space Station Biological Research Project at
the NASA Ames Research Center.

Dr. Venet obtained a PhD in
Computer Science in 1998 from Ecole Polytechnique
(France) under the supervision of Radhia Cousot. His thesis
presents a new class of abstract domains for static analysis
that can be used to precisely infer the structure of
dynamically allocated data in memory. He has worked as
an associate researcher in the group of Patrick Cousot at
Ecole Normale Supérieure (France). Dr. Venet architected
and implemented industrial static analyzers for real-size
critical software systems at PolySpace Technologies. Dr.
Venet has an extensive theoretical and industrial experience
in static analysis. His fields of expertise include pointer
analysis, automated test case generation, code compression
and software watermarking. He is currently a Research
Scientist at NASA Ames. He is the architect of C Global
Surveyor, a specialized static analyzer for verifying large
mission-critical software systems developed at NASA.. Dr.
Venet coauthored four patents on industrial applications of
static analysis.

 11

